首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1596篇
  免费   87篇
  国内免费   17篇
测绘学   35篇
大气科学   116篇
地球物理   405篇
地质学   570篇
海洋学   157篇
天文学   212篇
综合类   3篇
自然地理   202篇
  2023年   6篇
  2021年   18篇
  2020年   33篇
  2019年   27篇
  2018年   37篇
  2017年   49篇
  2016年   49篇
  2015年   39篇
  2014年   48篇
  2013年   79篇
  2012年   52篇
  2011年   99篇
  2010年   81篇
  2009年   92篇
  2008年   79篇
  2007年   52篇
  2006年   84篇
  2005年   68篇
  2004年   57篇
  2003年   58篇
  2002年   46篇
  2001年   28篇
  2000年   31篇
  1999年   23篇
  1998年   31篇
  1997年   24篇
  1996年   27篇
  1995年   24篇
  1994年   28篇
  1993年   21篇
  1992年   17篇
  1991年   12篇
  1990年   18篇
  1989年   16篇
  1988年   12篇
  1987年   11篇
  1986年   16篇
  1985年   18篇
  1984年   22篇
  1983年   14篇
  1982年   29篇
  1981年   19篇
  1980年   7篇
  1979年   13篇
  1978年   13篇
  1977年   10篇
  1976年   11篇
  1975年   8篇
  1974年   6篇
  1973年   13篇
排序方式: 共有1700条查询结果,搜索用时 15 毫秒
81.
This paper describes a series of tests designed to evaluate the capacity of a personal computer (PC) based statistical curve‐fitting program called MIX to quantify composite populations within multi‐modal particle‐size distributions. Three natural soil samples were analysed by a Coulter Multisizer, and their particle‐size distributions analysed using MIX software to identify the modes, standard deviations and proportions of their composite populations. The particle‐size distributions of the three natural soil samples were then numerically combined in equal proportions using a spreadsheet program to create synthetic particle‐size distributions of known populations. MIX was then tested on the synthetic particle‐size distributions to see if the modes and proportions it identified were similar to those modes and proportions known to characterize the synthetic particle‐size distributions. The main outcome is that MIX can very accurately describe the modal particle size and proportions of the major composite populations within a particle‐size distribution. However MIX has difficulty in identifying small populations (those contributing <10 per cent of a total particle‐size distribution), particularly when they are located in the central sections of particle‐size distributions, overlain by larger populations, or when positioned in the fine tails of distributions. Despite these minor shortcomings, MIX is a valuable tool for the examination and interpretation of particle‐size data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
82.
A large landslide on the urban fringe of metropolitan Phoenix, Arizona   总被引:2,自引:1,他引:2  
A granitic rock avalanche, one of the largest Quaternary landslides in Arizona outside the Grand Canyon with a volume of approximately 5.25 M m3 and a width a little under 0.5 km, ran 1 km from the eastern McDowell Mountains. With lateral levees and pressure ridges, the rock avalanche deposit displays many features found on classic sturzstroms. Failure occurred along a major joint plane paralleling the slope with a dip of 44°, when a major base level lowering event in the Salt River system would have undermined the base of the failed slope, and probably during a period of more moisture than normally available in the present-day arid climate. Failure at the subsurface weathering front highlights the importance of the dramatic permeability change between grussified regolith and relatively fresh bedrock. Rock varnish microlaminations (VMLs) dating, in concert with other geomorphic evidence, suggests that the rock avalanche deposit is slightly older than 500 ka. The rock vanish results also have important implications for sampling strategies designed to use cosmogenic nuclide to date Quaternary landslide deposits. Discovery of a large landslide in close proximity to the extending urban fringe of metropolitan Phoenix argues for a more careful analysis of landslide hazards in the region, especially where rapid development excavates bedrock at the base of steep mountain slopes and where the subsurface weathering front is near the surface.  相似文献   
83.
Late Quaternary alluvial induration has greatly influenced contemporary channel morphology on the anabranching Gilbert River in the monsoon tropics of the Gulf of Carpentaria. The Gilbert, one of a number of rivers in this region, has contributed to an extensive system of coalescing low-gradient and partly indurated riverine plains. Extensive channel sands were deposited by enhanced flow conditions during marine oxygen isotope (OI) Stage 5. Subsequent flow declined, probably associated with increased aridity, however, enhanced runoff recurred again in OI Stages 4–3 (65–50 ka). Aridity then capped these plains with 4–7 m of mud. A widespread network of sandy distributary channels was incised into this muddy surface from sometime after the Last Glacial Maximum (LGM) to the mid Holocene during a fluvial episode more active than the present but less so than those of OI Stages 5 and 3. This network is still partly active but with channel avulsion and abandonment now occurring largely proximal to the main Gilbert flow path.A tropical climate and reactive catchment lithology have enhanced chemical weathering and lithification of alluvium along the river resulting in the formation of small rapids, waterfalls and inset gorges, features characteristic more of bedrock than alluvial systems. Thermoluminescence (TL) and comparative optically stimulated luminescence (OSL) ages of the sediments are presented along with U/Th ages of pedogenic calcrete and Fe/Mn oxyhydroxide/ oxide accumulations. They show that calcrete precipitated during the Late Quaternary at times similar to those that favoured ferricrete formation, possibly because of an alternating wet–dry climate. Intense chemical alteration of the alluvium leading to induration appears to have prevailed for much of the Late Quaternary but, probably due to exceptional dryness, not during the LGM. The result has been restricted channel migration and a reduced capacity for the channel to adjust and accommodate sudden changes in bedload. Consequent avulsions have caused local stream powers to increase by an order of magnitude, inducing knickpoint erosion, local incision and the sudden influx of additional bedload that has triggered further avulsions. The Gilbert River, while less energetic than its Pleistocene ancestors, is clearly an avulsive system, and emphasizes the importance in some tropical rivers of alluvial induration for reinforcing the banks, generating nickpoints, reworking sediment and thereby developing and maintaining an indurated and anabranching river style.  相似文献   
84.
85.
INTRODUCTION Microfossilsaregenerallythemostversatileand “useful”offossilsforbothcorrelationandagedeter minationandpaleoenvironmentalanalysis.Among microfossilstheforaminiferaarepre eminent(Fig. 1).Wefindinthesamesample—beitoutcropor subsurface,onshor…  相似文献   
86.
Proglacial icings are one of the most common forms of extrusive ice found in the Canadian Arctic. However, the icing adjacent to Fountain Glacier, Bylot Island, is unique due to its annual cycle of growth and decay, and perennial existence without involving freezing point depression of water due to chemical characteristics. Its regeneration depends on the availability of subglacial water and on the balance between ice accretion and hydro‐thermal erosion. The storage and conduction of the glacial meltwater involved in the accretion of the icing were analyzed by conducting topographic and ground penetrating radar surveys in addition to the modelling of the subglacial drainage network and the thermal characteristics of the glacier base. The reflection power analysis of the geophysical data shows that some areas of the lower ablation zone have a high accumulation of liquid water, particularly beneath the centre part of the glacier along the main supraglacial stream. A dielectric permittivity model of the glacier – sediment interface suggests that a considerable portion of the glacier is warm based; allowing water to flow through unfrozen subglacial sediments towards the proglacial outwash plain. All these glacier‐related characteristics contribute to the annual regeneration of the proglacial icing and allow for portions of the icing to be perennial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
87.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   
88.
We collected soil‐hydraulic property data from the literature for wildfire‐affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field‐saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil‐structural changes, organic matter impacts, quantitative water repellency trends, and soil‐water content along with soil‐hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.  相似文献   
89.
90.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号